Package: exhaustiveRasch 0.3.7

Christian Grebe

exhaustiveRasch: Item Selection and Exhaustive Search for Rasch Models

Automation of the item selection processes for Rasch scales by means of exhaustive search for suitable Rasch models (dichotomous, partial credit, rating-scale) in a list of item-combinations. The item-combinations to test can be either all possible combinations or item-combinations can be defined by several rules (forced inclusion of specific items, exclusion of combinations, minimum/maximum items of a subset of items). Tests for model fit and item fit include ordering of the thresholds, item fit-indices, likelihood ratio test, Martin-Löf test, Wald-like test, person-item distribution, person separation index, principal components of Rasch residuals, empirical representation of all raw scores or Rasch trees for detecting differential item functioning. The tests, their ordering and their parameters can be defined by the user. For parameter estimation and model tests, functions of the packages 'eRm', 'psychotools' or 'pairwise' can be used.

Authors:Christian Grebe [cre, aut], Mirko Schürmann [aut], Joerg-Henrik Heine [ctb], Patrick Mair [ctb], Thomas Rusch [ctb], Reinhold Hatzinger [ctb], Marco J. Maier [ctb], Rudolf Debelak [ctb]

exhaustiveRasch_0.3.7.tar.gz
exhaustiveRasch_0.3.7.zip(r-4.5)exhaustiveRasch_0.3.7.zip(r-4.4)exhaustiveRasch_0.3.7.zip(r-4.3)
exhaustiveRasch_0.3.7.tgz(r-4.4-any)exhaustiveRasch_0.3.7.tgz(r-4.3-any)
exhaustiveRasch_0.3.7.tar.gz(r-4.5-noble)exhaustiveRasch_0.3.7.tar.gz(r-4.4-noble)
exhaustiveRasch_0.3.7.tgz(r-4.4-emscripten)exhaustiveRasch_0.3.7.tgz(r-4.3-emscripten)
exhaustiveRasch.pdf |exhaustiveRasch.html
exhaustiveRasch/json (API)
NEWS

# Install 'exhaustiveRasch' in R:
install.packages('exhaustiveRasch', repos = c('https://chrgrebe.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/chrgrebe/exhaustiverasch/issues

Datasets:
  • ADL - Activities of Daily Living - dichotomous example data
  • InterprofessionalCollaboration - InterprofessionalCollaboration - polytomous example data
  • cognition - Cognition - polytomous example data data measured with the FACT-cog (subscale perceived cognitive functioning) sample size: N=1009

On CRAN:

4.48 score 8 scripts 30 exports 24 dependencies

Last updated 10 days agofrom:9aa2482b12. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 18 2024
R-4.5-winOKDec 18 2024
R-4.5-linuxOKDec 18 2024
R-4.4-winOKDec 18 2024
R-4.4-macOKDec 18 2024
R-4.3-winOKDec 18 2024
R-4.3-macOKDec 18 2024

Exports:add_ICsall_rawscoresapply_combo_rulescheck_combo_rulesestimation_controlexhaustive_testsexpscoreexpscore.psyfit_raschitemfit_controlLRtest.psymloef.psyno_testparallized_testsppar.psypvxpvx.matrixpvx.superremove_subsetssummarytest_DIFtreetest_itemfittest_LRtest_mloeftest_personsItemstest_PSItest_respcatest_waldtestthreshold_orderwaldtest.psy

Dependencies:arrangementscolorspaceeRmFormulagmpGPArotationinumlatticelibcoinMASSMatrixmnormtmvtnormnlmepairwisepartykitpbapplypsychpsychotoolspsychotreeR6rpartsurvivaltictoc

Working with the exhaustiveRasch package

Rendered fromWorking_with_the_exhaustiveRasch_package.Rmdusingknitr::rmarkdownon Dec 18 2024.

Last update: 2024-12-17
Started: 2022-03-12